PYTHON

Data Science/Data Analysis

[Python] 정상성(Stationarity) 데이터를 얻기 위한 로그 변환(Log transformation)과 차분(Differencing)

정상성(Stationarity)정상성(Stationarity)이란 언제 관측되는지에 관계없이 어떤 시점에 관찰하더라도 예측할 수 있는 패턴을 발견할 수 없는 것을 뜻한다.정상성에 대한 자세한 사항은 여기를 참조하면 된다. 로그 변환(Log Transform)비정상성 시계열을 정상성으로 변환하는 방법은 로그 변환(Log Transformation)과 차분(Differencing) 2가지가 있다.우선 로그 변환(Log Transformation)이란 변동폭이 일정하지 않은 경우 사용할 수 있는데 일반적인 수학의 x를 log(x)로 바꾸는 변환 방식이다. 로그 변환은 원본 데이터의 왜곡을 줄이거나 제거하는데 여기서 주의할 점은 원 데이터가 로그 정규 분포를 따르거나 대략 따라줘야 한다. 그렇지 않으면 로그 변..

Data Science/Data Analysis

[Python] 정상성(Stationarity)과 비정상성(Non-Stationary)

시계열 데이터(Time Series Data)정상성과 비정상성에 대한 구별에 앞서 시계열 데이터의 특징에 대해 간략하게 알고 넘어가는 것이 좋다. 시계열 데이터에 대한 대표적인 특징은 아래와 같다.Trend(추세성)Seasonality(계절성)Aberration(이변성)Volatility(변동성)Non-linearity(비선형성)시계열 데이터는 크게 정상성 데이터와 비정상성 데이터로 나눌 수 있다. 정상성(Stationarity)정상성(Stationarity)이란 사전적 정의로는 일정하여 늘 한결같은 성질을 의미한다. 시계열 데이터를 다룰 때 정상성 데이터는 해당 데이터가 관측된 시간과 무관한 데이터를 뜻한다. 직관적으로 보자면 데이터의 분포에서 평균과 분산이 일정하면 정상성이라고 볼 수 있다.  예를 ..

AlienCoder
'PYTHON' 태그의 글 목록 (2 Page)
loading