이제까지 정상성에 대한 판단 방식과 비정상성 데이터를 정상성 데이터로 바꾸는 방법들에 대해 포스팅했다. 기초적인 내용들이지만 이를 토대로 정상성 데이터를 이용한 시계열 데이터(Time Series) 예측(Forecasting)을 수행할 수 있다. 한번 더 시계열의 특성을 짚고 넘어가자면,$$ 시계열 데이터 = 규칙적인 패턴+불규칙적인 패턴 $$으로 볼 수 있다. 이중 규칙적인 패턴은 이전 결과 사이 발생하는 자기상관성과(Autocorrelativeness)과 이후 결과에 편향성을 초래하는 이동평균(Moving Average) 현상으로 구분할 수 있다. 반대로 불규칙적인 패턴은 white noise라 칭하고 평균이 0이며 일정한 분산을 지닌 정규분포에서 추출된 임의의 수치로 정의하고 있는데, 이런 정규분..
주요 개념Augmented Dickey-Fuller Test (ADF Test) AR, MA, ARMA, ARIMA 모델을 적용하기 전, 우선 시계열 데이터를 정상성 데이터로 바꾼 후 사용하는 것이 바람직하다. 정상성을 띄기 위해선 시계열 데이터의 평균, 분산이 시간에 따라 일정해야 하고 lag에 따른 공분산이 일정해야 한다. 이를 위해 로그 변환을 해주거나 n차 차분을 적용해줄 수 있다. 시계열에 대한 자세한 사항은 여기를 참고하면 된다. 정상성에 대한 검증은 시각화를 하거나 상황에 대해 직관적인 판단을 통해 알 수 있지만 통계적인 정량적 방법으로 검증할 수 있는 방법을 사용하는 것이 데이터를 분석할 때 더 납득할 수 있는 방법이 될 것이다. 이를 위해 사용하는 방법 중 하나가 Augmented Dic..
상관도표(Correlogram)는 시계열 데이터를 분석에서 자주 활용되는데 자기상관함수(Autocorrelation Function, ACF) 또는 편자기상관함수(Partial Autocorrelation Function, PACF)를 그래프로 표현한 것을 뜻한다. 우리가 자주 말하는 Correlation은 두 변수 간의 관계를 -1~1 사이로 정규화한 값으로 표현하는 척도인데, Autocorrelation은 time shifted된 자기 자신의 데이터와의 상관성을 의미한다. 이 ACF와 PACF는 ARIMA 모델의 파라미터가 되는 p, d, q의 최적 차수를 탐색할 때 유용하게 사용된다. p는 AR, d는 차분 횟수, q는 MA와 관련이 있는 파라미터이다. ACF와 PACF 설명 이전에 자기회귀 모형(..