Data Science/ML & DL
Cross Entropy에 대한 고찰(with Softmax)
Cross EntropyCross Entropy는 확률 분포 간의 차이를 측정하는 지표로, 분류 문제에서 모델의 예측 성능을 평가하는 데 자주 사용된다. 이는 손실 함수의 한 종류이며, 손실 함수의 목표는 모델이 예측한 분포와 실제 분포 사이의 차이를 최소화하는 것이다. Cross Entropy를 이해하기 전 먼저 짚고 넘어가야 하는 개념이 있는데 바로 놀람도, 기대값, 엔트로피 이 세 가지이다. 먼저 놀람도에 대한 예를 들어보자.검은색 종이 999개와 흰색 종이가 1개 들어있는 상자가 있다고 가정하자. 이 상자에서 우리가 검은색 종이를 뽑았다면 우리는 당연하다고 생각할 것이다. 확률(\( p(x) \))이 훨씬 높기 때문이다. 하지만 흰색 종이가 나온다면 우리는 놀라게 될 것이다. 다시 말하면 이 놀람..