차분

Data Science/Data Analysis

[Python] AR, MA, ARMA, ARIMA 모델을 이용한 시계열(Time Series) 예측

이제까지 정상성에 대한 판단 방식과 비정상성 데이터를 정상성 데이터로 바꾸는 방법들에 대해 포스팅했다. 기초적인 내용들이지만 이를 토대로 정상성 데이터를 이용한 시계열 데이터(Time Series) 예측(Forecasting)을 수행할 수 있다. 한번 더 시계열의 특성을 짚고 넘어가자면,$$ 시계열 데이터 = 규칙적인 패턴+불규칙적인 패턴 $$으로 볼 수 있다. 이중 규칙적인 패턴은 이전 결과 사이 발생하는 자기상관성과(Autocorrelativeness)과 이후 결과에 편향성을 초래하는 이동평균(Moving Average) 현상으로 구분할 수 있다. 반대로 불규칙적인 패턴은 white noise라 칭하고 평균이 0이며 일정한 분산을 지닌 정규분포에서 추출된 임의의 수치로 정의하고 있는데, 이런 정규분..

Data Science/Data Analysis

[Python] 정상성(Stationarity) 데이터를 얻기 위한 로그 변환(Log transformation)과 차분(Differencing)

정상성(Stationarity)정상성(Stationarity)이란 언제 관측되는지에 관계없이 어떤 시점에 관찰하더라도 예측할 수 있는 패턴을 발견할 수 없는 것을 뜻한다.정상성에 대한 자세한 사항은 여기를 참조하면 된다. 로그 변환(Log Transform)비정상성 시계열을 정상성으로 변환하는 방법은 로그 변환(Log Transformation)과 차분(Differencing) 2가지가 있다.우선 로그 변환(Log Transformation)이란 변동폭이 일정하지 않은 경우 사용할 수 있는데 일반적인 수학의 x를 log(x)로 바꾸는 변환 방식이다. 로그 변환은 원본 데이터의 왜곡을 줄이거나 제거하는데 여기서 주의할 점은 원 데이터가 로그 정규 분포를 따르거나 대략 따라줘야 한다. 그렇지 않으면 로그 변..

AlienCoder
'차분' 태그의 글 목록
loading