Euclidean distance

Data Science/Data Analysis

[Python] 유클리드 거리(Euclidean Distance), 맨하탄 거리(Manhattan Distance), 해밍 거리(Hamming Distance)를 이용한 두 점 사이의 거리 구하기

주요 개념유클리드 거리(Euclidean Distance)맨하탄 거리(Manhattan Distance)해밍 거리(Hamming Distance) 두 점 사이의 거리를 구하는 방법은 유사도(Similarity)와 관련이 있다. 거리가 가까울수록 해당 데이터가 가지고 있는 특징(feature)이 유사할 가능성이 크기 때문이다. 두 점사이 거리를 구하기 위한 대표적인 방법으로 아래 세 가지가 있다. 하지만 아래 방식들은 데이터의 차원과 요소 개수가 동일해야 한다. 유클리드 거리(Euclidean Distance)우선 유클리드 거리(Euclidean Distance)는 아래 그림과 같이 계산할 수 있다. 피타고라스 정리와 크게 다르지 않다. 다만 차수가 많아져도 아래와 같이 계산할 수 있다.$$ d = \sq..

Data Science/Data Analysis

[자연어 처리] [Python] 코사인 유사도(Cosine Similarity)를 이용한 문장간 유사도 분석

주요 개념 자연어 처리 코사인 유사도(Cosine Similarity) 유클리드 거리(Euclidean distance) 코사인 유사도(Cosine Similarity)는 내적 공간의 두 벡터 간 각도의 코사인 값을 이용하여 측정된 벡터 간의 유사한 정도를 의미한다. 각도가 0°일 때의 코사인 값은 1이고 이외 다른 모든 각도의 코사인 값은 1보다 작다. 이 값은 벡터의 크기가 아닌 방향의 유사도를 판단하는 목적으로 사용되며, 두 벡터의 방향이 완전히 같을 경우 1, 90°의 각을 이룰 경우 0, 180°로 완전히 반대 방향인 경우 -1의 값을 갖는다. 이때 벡터의 크기는 값에 아무런 영향을 미치지 않는다. 코사인 유사도는 어떤 개수의 차원에도 적용이 가능하지만 특히 결과값이 [0,1]의 범위로 떨어지는..

AlienCoder
'Euclidean distance' 태그의 글 목록
loading