기본적으로 변환(Transform)이라는 말이 붙은 모든 것들은 기존의 풀거나 해석하기 어려웠던 형태를 보다 더 쉬운 형태로 바꿔주는 수학적 기법들이다. Z Transform(Z 변환)은 좁게는 선형 차분 방정식(Linear Difference Equation)을 쉽게 풀 수 있게 만들어 주는 테크닉이라고 할 수도 있고, 좀 더 넓은 의미에서는 DTFT(Discrete Time Fourier Transform)의 일반화된 형태라고 할 수도 있다. Z 변환에는 One-Sided Z-Transform, Two-Sided Z-Transform이 있다. One-Sided Z-TransformOne side Z 변환은 +영역만을 사용하는 변환이다.$$ X(z) = \sum_{n=0}^{\infty} x[n] z..
Discrete-Time Fourier Transform(DTFT)와 Discrete Fourier Transform(DFT)는 모두 이산 신호의 주파수 특성을 분석하기 위한 도구로 사용된다. 항목DTFTDFT신호 길이무한유한 (N개)주파수 축연속적 (무한)이산적 (N개)존재 이유이론적 분석 (연속 주파수)실제 계산 및 구현계산 가능성불가능가능 (FFT 사용) Discrete-Time Fourier Transform(DTFT)Discrete-Time Fourier Transform(DTFT)는 무한 길이의 이산 신호를 연속적인 주파수 변수(ω)에 대해 변환하는 수학적 도구이다. 시간 이산 신호 \( x[n] \)에 대한 DTFT는 다음과 같이 정의된다.$$ X(e^{j\omega}) = \sum_{n=-..